ISSN 0304-9892

Jñanabha ज्ञानाभ

VOLUME 39

2009

Published by : The Vijñāna Parishad of India DAYANAND VEDIC POSTGRADUATE COLLECT (Bundelkhand University)

ORAI, U.P., INDIA

APPLICATION OF *H*-FUNCTION FOR OBTAINNG AN ANALYTIC SOLUTION OF THE SPACE-AND-TIME FRACTIONAL INITIAL VALUE DIFFUSION PROBLEM

By

Hemant Kumar

Department of Mathematics D.A.V. Postgraduate College, Kanpur-208027, Uttar Pradesh, India E-mail: palhemant2007@rediffmail.com

and

M.A. Pathan

Department of Mathematics

University of Botswana, Private Bag 0022, Gaborone, Botswana

E-mail: mapathan@gmail.com

and

Harish Srivastava

Department of Mathematics

D.A.V. Post Graduate College, Kanpur-208027, Uttar Pradesh, India E-mail: harishsrivastav@rediffmail.com

(Received : September 2, 2009)

ABSTRACT

In the present paper, we make an application of Fox's *H*-function to derive an analytic solution of the space-and-time fractional initial value diffusion problem

defined in a bounded space domain $x \in (a, b)$. In this process, the Adomian

decomposition techniques and the given initial conditions are taken into account. We also make some extensions of above solution through Lie group techniques.

2000 Mathematics Subject Classification : 35S5, 35S10, 35G20, 26A33, 33C60, 22E60.

Keywords. Spae-and-time fractional initial value diffusion equation, decompositon techniques, Fox's *H*-function, Lie group techniques.

1. Introduction. Nowadays connection between walk and fractional order dynamics is well known, see for instance, Adler et al. [1], Andries et al. [7] and Metzler and Klafter [24]. A number of constructive random walk models governed by fractional order differential equations in the one dimensional case were studied by Gills et al. [15], Chechkin et al. ([10], [11]), Gorenflo et al. ([16]-[18]). In these studies the governing equation depends on the parameters $\alpha \in (0,1)$ and $\beta \in (0,2]$

CONTENTS

MULTISET RELATIONS AND THEIR MATRIX REPRESENTATION	
-D. Singh, A.M. Ibrahim, A.O. Salihu and J.N. Singh	1-12
GENERALIZED FRACTIONAL CALCULUS OPERATORS	
PERTAINING TO H-FUNCTION AND THEIR COMPOSITIONS WITH	
AXI SYMMETRIC DIFFERENTIAL OPERA'TORS OF THE POTENTIAL	
THEORY OF SPACES F_{nu} AND F'_{nu}	
-V.B.L. Chaurasia and Nitin Kumar Soni	13-34
USE OF SOME TRANSCENDENTAL FUNCTIONS TO NON-LINEAR	
DIFFERENTIAL EQUATIONS WITH I-FUNCTION	
-V.B.L. Chaurasia and Mukesh Agnihotri	35.49
A GENERAL CONTINUED FRACTION REPRESENTATION AND ITS	
CONSEQUENCES	
- Anand Kumer Srivestava	40 EC
INTEGRALS INVOLVING MODIFIED MULTI-VADIADI E & EUNOTION	43-00
INTEGRALS INVOLVING MODIFIED MOLIT-VARIABLE A-FUNCTION	
	57-66
APPLICATION OF H-FUNCTION FOR OBTAINING AN ANALYTIC	
SOLUTION OF THE SPACE-AND-TIME FRACTIONAL INITIAL VALUE	
DIFFUSION PROBLEM	
-Hemant Kumar, M.A. Pathan and Harish Srivastava	67-76
FRFT BASED ANALYSIS OF WEIGHT FUNCTIONS	
- Renu Jain, Rajiv Saxena and Rajshree Mishra	77-86
GENERATING FUNCTIONS FOR BASIC CONFLUENT	
HYPERGEOMETRIC FUNCTION	
- Kishan Sharma and Renu Jain	87-90
EXACT TRAVELING WAVE ANALYSIS OF SECOND HARMONIC	
SOLITARY WAVE IN A NONLINEAR MEDIUM	
- R.K. Pathak, R.K. Jain and J. Parashar	91-100
GRAVITATIONAL INSTABILITY OF A THERMALLY CONDUCTING	
ELASTICOVISCOUS FLUID IN THE PRESENCE OF SUSPENDED	
PARTICLES	
- Sanieev Kumar, Renu Jaswal	101-120
LAPLACE INTEGRAL REPRESENTATIONS AND RECURRENCE	
RELATIONS OF MULTIPLE HYPERGEOMETRIC RUSS TIONS	
RELATED TO LAURICELLA'S FUNCTIONS	
- B.C. Singh Chandel and Vandana Gunta	191.154
MACNETOHVDRODYNAMIC FLOW OF INCOMPRESSIDE & A SECTION	
FRICKSEN ELLIDS BETWEEN TWO DODOLIS INCLINED DI AUDES	
D B Singh Arus Kumer Shukle Awedheeh Dendeu	
- D.P. Singh, Arun Kumar Shukia, Awadnesh Pandey	
	155-166
MIND FLUCTUATING HELE-SHAW FLOW OF AN INCOMPRESSIBLE	
VISCOELASTIC FLUID PAST A CIRCULAR CYLINDER	
- D.P. Singn, Arun Kumar Shukla, Awadhesh Pandey	
and S.K. Rathore	167-172
EFFECT OF SUSPENDED PARTICLES ON THERMAL CONVECTION	
IN A VISCOELASTIC WALTERS' (MODEL B') FLUID	
- Veena Sharma and Sanjeev Kumar	171-181